栈与队列

2017/01/03 DataStructure

栈与队列

栈(Stack)是限定仅在表尾进行插入和删除操作的线性表。 队列(Queue)是只允许在一端进行插入操作、而在另一端进行删除操作的线性表。

栈的定义

栈(stack)是限定仅在表尾进行插入和删除操作的线性表。

我们把允许插入和删除的一端称为栈顶(top),另一端称为栈底(bottom),不含任何数据元素的栈称为空栈。栈又称为后进先出(Last In First Out)的线性表,简称LIFO结构。

理解栈的定义需要注意:

首先它是一个线性表,也就是说,栈元素具有线性关系,即前驱后继关系。只不过它是一种特殊的线性表而已。定义中说是在线性表的表尾进行插入和删除操作,这里表尾是指栈顶,而不是栈底。

它的特殊之处就在于限制了这个线性表的插入和删除位置,它始终只在栈顶进行。这也就使得:栈底是固定的,最先进栈的只能在栈底。

栈的插入操作,叫作进栈,也称压栈、入栈。 栈的删除操作,叫作出栈,也有的叫作弹栈。

这里以羽毛球筒为例,羽毛球筒就是一个栈,刚开始羽毛球筒是空的,也就是空栈,然后我们一个一个放入羽毛球,也就是一个一个push进栈,当我们需要使用羽毛球的时候,从筒里面拿,也就是pop出栈,但是第一个拿到的羽毛球是我们最后放进去的。

人固有一死,或重于泰山,或轻于鸿毛。——司马迁《报任安书》

(Stack)

数组更多的是用来进行数据的存储,纯粹用来存储数据的数据结构,我们期望的是插入、删除和查找性能都比较好。对于无序数组,插入快,但是删除和查找都很慢,为了解决这些问题,后面我们会讲解比如二叉树、哈希表的数据结构。

现在讲解的数据结构和算法更多是用作程序员的工具,它们作为构思算法的辅助工具,而不是完全的数据存储工具。这些数据结构的生命周期比数据库类型的结构要短得多,在程序执行期间它们才被创建,通常用它们去执行某项特殊的业务,执行完成之后,它们就被销毁。这里的它们就是——栈和队列。

栈是一种先进后出FILO,First in last out)或后进先出LIFO,Last in first out)的数据结构。

数据结构-stack

栈的基本概念

(英语:stack)又称为堆栈堆叠,栈作为一种数据结构,是一种只能在一端进行插入和删除操作的特殊线性表。它按照先进后出的原则存储数据,先进入的数据被压入栈底,最后的数据在栈顶,需要读数据的时候从栈顶开始弹出数据(最后一个数据被第一个读出来)。栈具有记忆作用,对栈的插入与删除操作中,不需要改变栈底指针。

栈是允许在同一端进行插入和删除操作的特殊线性表。允许进行插入和删除操作的一端称为栈顶(top),另一端为栈底(bottom);栈底固定,而栈顶浮动;栈中元素个数为零时称为空栈。插入一般称为进栈(PUSH),删除则称为退栈(POP)。

由于堆叠数据结构只允许在一端进行操作,因而按照后进先出(LIFO, Last In First Out)的原理运作。栈也称为后进先出表。

数据结构-Stack操作

这里以羽毛球筒为例,羽毛球筒就是一个栈,刚开始羽毛球筒是空的,也就是空栈,然后我们一个一个放入羽毛球,也就是一个一个push进栈,当我们需要使用羽毛球的时候,从筒里面拿,也就是pop出栈,但是第一个拿到的羽毛球是我们最后放进去的。

Java模拟简单的顺序栈实现

package com.demo.datastructure;
 
public class MyStack {
    private int[] array;
    private int maxSize;
    private int top;
     
    public MyStack(int size){
        this.maxSize = size;
        array = new int[size];
        top = -1;
    }
     
    //压入数据
    public void push(int value){
        if(top < maxSize-1){
            array[++top] = value;
        }
    }
     
    //弹出栈顶数据
    public int pop(){
        return array[top--];
    }
     
    //访问栈顶数据
    public int peek(){
        return array[top];
    }
     
    //判断栈是否为空
    public boolean isEmpty(){
        return (top == -1);
    }
     
    //判断栈是否满了
    public boolean isFull(){
        return (top == maxSize-1);
    }
     
 
}

测试:

package com.demo.test;
 
import com.demo.datastructure.MyStack;
 
public class MyStackTest {
    public static void main(String[] args) {
        MyStack stack = new MyStack(3);
        stack.push(1);
        stack.push(2);
        stack.push(3);
        System.out.println(stack.peek());
        while(!stack.isEmpty()){
            System.out.println(stack.pop());
        }
         
    }
 
}

这个栈是用数组实现的,内部定义了一个数组,一个表示最大容量的值以及一个指向栈顶元素的top变量。构造方法根据参数规定的容量创建一个新栈,push()方法是向栈中压入元素,指向栈顶的变量top加一,使它指向原顶端数据项上面的一个位置,并在这个位置上存储一个数据。pop()方法返回top变量指向的元素,然后将top变量减一,便移除了数据项。要知道 top 变量指向的始终是栈顶的元素。

产生的问题:

①、上面栈的实现初始化容量之后,后面是不能进行扩容的(虽然栈不是用来存储大量数据的),如果说后期数据量超过初始容量之后怎么办?(*自动扩容*

②、我们是用数组实现栈,在定义数组类型的时候,也就规定了存储在栈中的数据类型,那么同一个栈能不能存储不同类型的数据呢?(声明为Object)

③、栈需要初始化容量,而且数组实现的栈元素都是连续存储的,那么能不能不初始化容量呢?(改为由链表实现)

增强功能版栈

对于上面出现的问题,第一个能自动扩容,第二个能存储各种不同类型的数据,解决办法如下:(第三个在讲链表的时候在介绍)

这个模拟的栈在JDK源码中,大家可以参考 Stack 类的实现。

package com.demo.datastructure;
 
import java.util.Arrays;
import java.util.EmptyStackException;
 
public class ArrayStack {
    //存储元素的数组,声明为Object类型能存储任意类型的数据
    private Object[] elementData;
    //指向栈顶的指针
    private int top;
    //栈的总容量
    private int size;
     
     
    //默认构造一个容量为10的栈
    public ArrayStack(){
        this.elementData = new Object[10];
        this.top = -1;
        this.size = 10;
    }
     
    public ArrayStack(int initialCapacity){
        if(initialCapacity < 0){
            throw new IllegalArgumentException("栈初始容量不能小于0: "+initialCapacity);
        }
        this.elementData = new Object[initialCapacity];
        this.top = -1;
        this.size = initialCapacity;
    }
     
     
    //压入元素
    public Object push(Object item){
        //是否需要扩容
        isGrow(top+1);
        elementData[++top] = item;
        return item;
    }
     
    //弹出栈顶元素
    public Object pop(){
        Object obj = peek();
        remove(top);
        return obj;
    }
     
    //获取栈顶元素
    public Object peek(){
        if(top == -1){
            throw new EmptyStackException();
        }
        return elementData[top];
    }
    //判断栈是否为空
    public boolean isEmpty(){
        return (top == -1);
    }
     
    //删除栈顶元素
    public void remove(int top){
        //栈顶元素置为null
        elementData[top] = null;
        this.top--;
    }
     
    /**
     * 是否需要扩容,如果需要,则扩大一倍并返回true,不需要则返回false
     * @param minCapacity
     * @return
     */
    public boolean isGrow(int minCapacity){
        int oldCapacity = size;
        //如果当前元素压入栈之后总容量大于前面定义的容量,则需要扩容
        if(minCapacity >= oldCapacity){
            //定义扩大之后栈的总容量
            int newCapacity = 0;
            //栈容量扩大两倍(左移一位)看是否超过int类型所表示的最大范围
            if((oldCapacity<<1) - Integer.MAX_VALUE >0){
                newCapacity = Integer.MAX_VALUE;
            }else{
                newCapacity = (oldCapacity<<1);//左移一位,相当于*2
            }
            this.size = newCapacity;
            int[] newArray = new int[size];
            elementData = Arrays.copyOf(elementData, size);
            return true;
        }else{
            return false;
        }
    }
     
     
 
}

测试:

//测试自定义栈类 ArrayStack
//创建容量为3的栈,然后添加4个元素,3个int,1个String.
@Test
public void testArrayStack(){
    ArrayStack stack = new ArrayStack(3);
    stack.push(1);
    //System.out.println(stack.peek());
    stack.push(2);
    stack.push(3);
    stack.push("abc");
    System.out.println(stack.peek());
    stack.pop();
    stack.pop();
    stack.pop();
    System.out.println(stack.peek());
}
  • 单向链表:可以利用一个单链表来实现栈的数据结构。而且,因为我们都只针对栈顶元素进行操作,所以借用单链表的头就能让所有栈的操作在 O(1) 的时间内完成。
  • Stack:是Vector的子类,比Vector多了几个方法
public class Stack<E> extends Vector<E> {
        // 把元素压入栈顶
        public E push(E item) {
            addElement(item);
            return item;
        }
    
        // 弹出栈顶元素
        public synchronized E pop() {
            E obj;
            int len = size();
            obj = peek();
            removeElementAt(len - 1);
            return obj;
        }
    
        // 访问当前栈顶元素,但是不拿走栈顶元素
        public synchronized E peek() {
            int len = size();
            if (len == 0)
                throw new EmptyStackException();
            return elementAt(len - 1);
        }
    
	// 测试堆栈是否为空
        public boolean empty() {
            return size() == 0;
        }
        
        // 返回对象在堆栈中的位置,以1为基数
        public synchronized int search(Object o) {
            int i = lastIndexOf(o);
            if (i >= 0) {
                return size() - i;
            }
            return -1;
        }
}

基本操作(失败时:add/remove/element为抛异常,offer/poll/peek为返回false或null)

  • E push(E):把元素压入栈
  • E pop():把栈顶的元素弹出
  • E peek():取栈顶元素但不弹出
  • boolean empty():堆栈是否为空测试
  • int search(o):返回对象在堆栈中的位置,以 1 为基数

利用栈实现字符串逆序

我们知道栈是后进先出,我们可以将一个字符串分隔为单个的字符,然后将字符一个一个push()进栈,在一个一个pop()出栈就是逆序显示了。如下:

将 字符串“how are you” 反转!!!

ps:这里我们是用上面自定的栈来实现的,大家可以将ArrayStack替换为JDK自带的栈类Stack试试

//进行字符串反转
@Test
public void testStringReversal(){
    ArrayStack stack = new ArrayStack();
    String str = "how are you";
    char[] cha = str.toCharArray();
    for(char c : cha){
        stack.push(c);
    }
    while(!stack.isEmpty()){
        System.out.print(stack.pop());
    }
}

利用栈判断分隔符是否匹配

写过xml标签或者html标签的,我们都知道<必须和最近的>进行匹配,[ 也必须和最近的 ] 进行匹配。

比如:<abc[123]abc>这是符号相匹配的,如果是 <abc[123>abc] 那就是不匹配的。

对于 12<a[b{c}]>,我们分析在栈中的数据:遇到匹配正确的就消除

最后栈中的内容为空则匹配成功,否则匹配失败!!!

//分隔符匹配
//遇到左边分隔符了就push进栈,遇到右边分隔符了就pop出栈,看出栈的分隔符是否和这个有分隔符匹配
@Test
public void testMatch(){
    ArrayStack stack = new ArrayStack(3);
    String str = "12<a[b{c}]>";
    char[] cha = str.toCharArray();
    for(char c : cha){
        switch (c) {
        case '{':
        case '[':
        case '<':
            stack.push(c);
            break;
        case '}':
        case ']':
        case '>':
            if(!stack.isEmpty()){
                char ch = stack.pop().toString().toCharArray()[0];
                if(c=='}' && ch != '{'
                    || c==']' && ch != '['
                    || c==')' && ch != '('){
                    System.out.println("Error:"+ch+"-"+c);
                }
            }
            break;
        default:
            break;
        }
    }
}

根据栈后进先出的特性,我们实现了单词逆序以及分隔符匹配。所以其实栈是一个概念上的工具,具体能实现什么功能可以由我们去想象。栈通过提供限制性的访问方法push()和pop(),使得程序不容易出错。

在解决某个问题的时候,只要求关心最近一次的操作,并且在操作完成了之后,需要向前查找到更前一次的操作。

应用场景

案例一:判断字符串是否有效

给定一个只包括 ‘(‘,’)’,’{‘,’}’,’[‘,’]’ 的字符串,判断字符串是否有效。有效字符串需满足:

  • 左括号必须用相同类型的右括号闭合
  • 左括号必须以正确的顺序闭合
  • 空字符串可被认为是有效字符串

解题思路:利用一个栈,不断地往里压左括号,一旦遇上了一个右括号,我们就把栈顶的左括号弹出来,表示这是一个合法的组合,以此类推,直到最后判断栈里还有没有左括号剩余。

案例二:每日温度

根据每日气温列表,请重新生成一个列表,对应位置的输入是你需要再等待多久温度才会升高超过该日的天数。如果之后都不会升高,请在该位置用 0 来代替。

解题思路

  • 思路 1:最直观的做法就是针对每个温度值向后进行依次搜索,找到比当前温度更高的值,这样的计算复杂度就是 O(n2)。

  • 思路 2:可以运用一个堆栈 stack 来快速地知道需要经过多少天就能等到温度升高。从头到尾扫描一遍给定的数组 T,如果当天的温度比堆栈 stack 顶端所记录的那天温度还要高,那么就能得到结果。

对于栈的实现,我们稍微分析就知道,数据入栈和出栈的时间复杂度都为O(1),也就是说栈操作所耗的时间不依赖栈中数据项的个数,因此操作时间很短。而且需要注意的是栈不需要比较和移动操作,我们不要画蛇添足。

Search

    微信好友

    博士的沙漏

    Table of Contents