正则表达式
正则表达式(Regular Expression)是强大、便捷、高效的文本处理工具。正则表达式本身,加上如同一门袖珍编程语言的通用模式表示法(general pattern notation),赋予使用者描述和分析文本的能力。配合上特定工具提供的额外支持,正则表达式能够添加、删除、分离、叠加、插入和修整各种类型的文本和数据。
正则表达式的起源
关于正则表达式,最初的想法来自20世纪40年代的两位神经学家,Warren McCulloch和Walter Pitts,他们研究出一种模型,认为神经系统在神经元层面上就是这样工作的。若干年后,数学家Stephen Kleene在代数学中正式描述了这种被他称为“正则集合”(regular sets)的模型,正则表达式才成为现实。Stephen 发明了一套简洁的表示正则集合的方法,他称之为“正则表达式”(regular expressions)。
20世纪50年代和60年代,理论数学界对正则表达式进行了充分的研究。Robert Constable的文章为那些对数学感兴趣的读者提供了很不错的简介。
尽管存在更古老的应用正则表达式的证据,但我能找到的是,关于在计算方面使用正则表达式的资料,最早发表的是 1968 年 Ken Thompson 的文章 Regular Expression Search Algorithm,在文中,他描述了一种正则表达式编译器,该编译器生成了 IBM 7094的object代码。由此也诞生了他的qed,这种编辑器后来成了Unix中ed编辑器的基础。
ed的正则表达式并不如qed的先进,但是这是正则表达式第一次在非技术领域大规模使用。ed 有条命令,显示正在编辑的文件中能够匹配特定正则表达式的行。该命令“g/Regular Expression/p”,读作Global Regular Expression Print(应用正则表达式的全局输出)。这个功能非常实用,最终成为独立的工具grep(之后又产生了egrep——扩展的grep)。
## 完整的正则表达式由两种字符构成。特殊字符(special characters,例如文件名例子中的*)称为“元字符”(metacharacters),其他为“文字”(literal),或者是普通文本字符(normal text characters)。正则表达式与文件名模式(filename pattern)的区别就在于,正则表达式的元字符提供了更强大的描述能力。
为了便于理解,我们可以把正则表达式想象为普通的语言,普通字符对应普通语言中的单词,而元字符对应语法。根据语言的规则,按照语法把单词组合起来,就会得到能传达思想的文本。
表达式的匹配原理
正则引擎主要可以分为基本不同的两大类:一种是DFA,另一种是NFA。DFA和NFA反映了将正则表达式在应用算法上的根本差异。我把NFA称为“表达式主导(regex-directed)”引擎,而DFA称为“文本主导(text-directed)”引擎。
NFA引擎:表达式主导
我们来看用匹配文本的一种办法。正则表达式从开始,每次检查一部分(由引擎查看表达式的一部分),同时检查“当前文本(current text)”是否匹配表达式的当前部分。如果是,则继续表达式的下一部分,如此继续,直到表达式的所有部分都能匹配,即整个表达式能够匹配成功。
DFA引擎:文本主导
DFA引擎在扫描字符串时,会记录“当前有效(currently in the works)”的所有匹配可能。
如果读者根据上面介绍的知识比较NFA和DFA,可能会得出结论:一般情况下,文本主导的DFA引擎要快一些。正则表达式主导的NFA引擎,因为需要对同样的文本尝试不同的子表达式匹配,可能会浪费时间 正则表达式引擎所使用的两种基本技术,都对应有正式的名字:非确定型有穷自动机(NFA)和确定型有穷自动机(DFA)。
回溯
NFA 引擎最重要的性质是,它会依次处理各个子表达式或组成元素,遇到需要在两个可能成功的可能中进行选择的时候,它会选择其一,同时记住另一个,以备稍后可能的需要。
需要做出选择的情形包括量词(决定是否尝试另一次匹配)和多选结构(决定选择哪个多选分支,留下哪个稍后尝试)。
不论选择那一种途径,如果它能匹配成功,而且正则表达式的余下部分也成功了,匹配即告完成。如果正则表达式中余下的部分最终匹配失败,引擎会知道需要回溯到之前做出选择的地方,选择其他的备用分支继续尝试。这样,引擎最终会尝试表达式的所有可能途径(或者是匹配完成之前需要的所有途径)。
回溯就像是在道路的每个分岔口留下一小堆面包屑。如果走了死路,就可以照原路返回,直到遇见面包屑标示的尚未尝试过的道路。如果那条路也走不通,你可以继续返回,找到下一堆面包屑,如此重复,直到找到出路,或者走完所有没有尝试过的路。
精通正则表达式
^:开始符号
( ):用来分组,查找字符串时使用,按组查找
[ ]:表示一个集合,
0-9:表示0-9中的一个整数
$:结束符号
有^时匹配必须从字符串开头开始,如正则^abc可以匹配abcd 但不能匹配dabc,有$时最后一个字符必须在字符串结尾, 同时有^和$表示必须匹配整个字符串,如正则^abc$匹配字符串abc,但不能匹配abcd
^([0-9])$
所以上面的正则只能匹配0-9的一个整数。两位数都不行。
*:匹配前面的子表达式零次或多次。
^([0-9]*)$,
\ 将下一个字符标记为一个特殊字符、或一个原义字符、或一个 向后引用、或一个八进制转义符。例如,'n' 匹配字符 "n"。'\n' 匹配一个换行符。序列 '\\' 匹配 "\" 而 "\(" 则匹配 "("。
^ 匹配输入字符串的开始位置。如果设置了 RegExp 对象的 Multiline 属性,^ 也匹配 '\n' 或 '\r' 之后的位置。
$ 匹配输入字符串的结束位置。如果设置了RegExp 对象的 Multiline 属性,$ 也匹配 '\n' 或 '\r' 之前的位置。
* 匹配前面的子表达式零次或多次。例如,zo* 能匹配 "z" 以及 "zoo"。* 等价于{0,}。
+ 匹配前面的子表达式一次或多次。例如,'zo+' 能匹配 "zo" 以及 "zoo",但不能匹配 "z"。+ 等价于 {1,}。
? 匹配前面的子表达式零次或一次。例如,"do(es)?" 可以匹配 "do" 或 "does" 中的"do" 。? 等价于 {0,1}。
{n} n 是一个非负整数。匹配确定的 n 次。例如,'o{2}' 不能匹配 "Bob" 中的 'o',但是能匹配 "food" 中的两个 o。
{n,} n 是一个非负整数。至少匹配n 次。例如,'o{2,}' 不能匹配 "Bob" 中的 'o',但能匹配 "foooood" 中的所有 o。'o{1,}' 等价于 'o+'。'o{0,}' 则等价于 'o*'。
{n,m} m 和 n 均为非负整数,其中n <= m。最少匹配 n 次且最多匹配 m 次。例如,"o{1,3}" 将匹配 "fooooood" 中的前三个 o。'o{0,1}' 等价于 'o?'。请注意在逗号和两个数之间不能有空格。
? 当该字符紧跟在任何一个其他限制符 (*, +, ?, {n}, {n,}, {n,m}) 后面时,匹配模式是非贪婪的。非贪婪模式尽可能少的匹配所搜索的字符串,而默认的贪婪模式则尽可能多的匹配所搜索的字符串。例如,对于字符串 "oooo",'o+?' 将匹配单个 "o",而 'o+' 将匹配所有 'o'。
. 匹配除 "\n" 之外的任何单个字符。要匹配包括 '\n' 在内的任何字符,请使用象 '[.\n]' 的模式。
(pattern) 匹配 pattern 并获取这一匹配。所获取的匹配可以从产生的 Matches 集合得到,在VBScript 中使用 SubMatches 集合,在JScript 中则使用 $0…$9 属性。要匹配圆括号字符,请使用 '\(' 或 '\)'。
(?:pattern) 匹配 pattern 但不获取匹配结果,也就是说这是一个非获取匹配,不进行存储供以后使用。这在使用 "或" 字符 (|) 来组合一个模式的各个部分是很有用。例如, 'industr(?:y|ies) 就是一个比 'industry|industries' 更简略的表达式。
(?=pattern) 正向预查,在任何匹配 pattern 的字符串开始处匹配查找字符串。这是一个非获取匹配,也就是说,该匹配不需要获取供以后使用。例如,'Windows (?=95|98|NT|2000)' 能匹配 "Windows 2000" 中的 "Windows" ,但不能匹配 "Windows 3.1" 中的 "Windows"。预查不消耗字符,也就是说,在一个匹配发生后,在最后一次匹配之后立即开始下一次匹配的搜索,而不是从包含预查的字符之后开始。
(?!pattern) 负向预查,在任何不匹配 pattern 的字符串开始处匹配查找字符串。这是一个非获取匹配,也就是说,该匹配不需要获取供以后使用。例如'Windows (?!95|98|NT|2000)' 能匹配 "Windows 3.1" 中的 "Windows",但不能匹配 "Windows 2000" 中的 "Windows"。预查不消耗字符,也就是说,在一个匹配发生后,在最后一次匹配之后立即开始下一次匹配的搜索,而不是从包含预查的字符之后开始。
x|y 匹配 x 或 y。例如,'z|food' 能匹配 "z" 或 "food"。'(z|f)ood' 则匹配 "zood" 或 "food"。
[xyz] 字符集合。匹配所包含的任意一个字符。例如, '[abc]' 可以匹配 "plain" 中的 'a'。
[^xyz] 负值字符集合。匹配未包含的任意字符。例如, '[^abc]' 可以匹配 "plain" 中的'p'。
[a-z] 字符范围。匹配指定范围内的任意字符。例如,'[a-z]' 可以匹配 'a' 到 'z' 范围内的任意小写字母字符。
[^a-z] 负值字符范围。匹配任何不在指定范围内的任意字符。例如,'[^a-z]' 可以匹配任何不在 'a' 到 'z' 范围内的任意字符。
\b 匹配一个单词边界,也就是指单词和空格间的位置。例如, 'er\b' 可以匹配"never" 中的 'er',但不能匹配 "verb" 中的 'er'。
\B 匹配非单词边界。'er\B' 能匹配 "verb" 中的 'er',但不能匹配 "never" 中的 'er'。
\cx 匹配由 x 指明的控制字符。例如, \cM 匹配一个 Control-M 或回车符。x 的值必须为 A-Z 或 a-z 之一。否则,将 c 视为一个原义的 'c' 字符。
\d 匹配一个数字字符。等价于 [0-9]。
\D 匹配一个非数字字符。等价于 [^0-9]。
\f 匹配一个换页符。等价于 \x0c 和 \cL。
\n 匹配一个换行符。等价于 \x0a 和 \cJ。
\r 匹配一个回车符。等价于 \x0d 和 \cM。
\s 匹配任何空白字符,包括空格、制表符、换页符等等。等价于 [ \f\n\r\t\v]。
\S 匹配任何非空白字符。等价于 [^ \f\n\r\t\v]。
\t 匹配一个制表符。等价于 \x09 和 \cI。
\v 匹配一个垂直制表符。等价于 \x0b 和 \cK。
\w 匹配包括下划线的任何单词字符。等价于'[A-Za-z0-9_]'。
\W 匹配任何非单词字符。等价于 '[^A-Za-z0-9_]'。
\xn 匹配 n,其中 n 为十六进制转义值。十六进制转义值必须为确定的两个数字长。例如,'\x41' 匹配 "A"。'\x041' 则等价于 '\x04' & "1"。正则表达式中可以使用 ASCII 编码。
\num 匹配 num,其中 num 是一个正整数。对所获取的匹配的引用。例如,'(.)\1' 匹配两个连续的相同字符。
\n 标识一个八进制转义值或一个向后引用。如果 \n 之前至少 n 个获取的子表达式,则 n 为向后引用。否则,如果 n 为八进制数字 (0-7),则 n 为一个八进制转义值。
\nm 标识一个八进制转义值或一个向后引用。如果 \nm 之前至少有 nm 个获得子表达式,则 nm 为向后引用。如果 \nm 之前至少有 n 个获取,则 n 为一个后跟文字 m 的向后引用。如果前面的条件都不满足,若 n 和 m 均为八进制数字 (0-7),则 \nm 将匹配八进制转义值 nm。
\nml 如果 n 为八进制数字 (0-3),且 m 和 l 均为八进制数字 (0-7),则匹配八进制转义值 nml。
\un 匹配 n,其中 n 是一个用四个十六进制数字表示的 Unicode 字符。例如, \u00A9 匹配版权符号 (?)。